-
Articles récents
- Le recrutement automatisé discriminatoire assisté par l’intelligence artificielle
- Protection des données, IA et silent updates
- Dépasser l’équité algorithmique
- Discriminatory automated recruitment assisted by artificial intelligence (AI)
- Diskriminierende automatisierte Personalbeschaffung mit KI-Unterstützung
Catégories
- Animaux
- Astuces pratiques
- Autres contrats
- Avocats (règles professionnelles)
- AVS et assurances sociales
- économie domestique
- bêtisier
- capacité de discernement
- Certificat de travail
- Chômage
- Clause de non concurrence
- concurrence déloyale
- congés
- Coronavirus – Covid 19
- démission
- Devoir de fidélité et diligence
- discrimination
- Divers
- Droit administratif général
- Droit collectif du travail
- droit d'auteur
- Droit des étrangers
- Droit disciplinaire
- droit européen
- droit français
- Droit pénal
- Droit US
- Egalité femmes-hommers
- FAQ
- Fin des rapports de travail
- Fiscalité (en général)
- Fiscalité du revenu dépendant
- Fiscalité personne physique
- Fonction publique
- Frais professionnels
- Handicap
- Harcèlement psychologique/sexuel
- Heures supplémentaires
- Incapacité de travail
- intelligence artificielle
- Interprétation du contrat
- Les essentiels
- liberté d'expression
- Libertés
- Licenciement abusif
- licenciement collectif
- Licenciement en temps inopportun
- Licenciement immédiat
- LIPAD
- Litiges, contentieux
- Location de services
- Loi sur le travail
- Non classé
- Notions de base
- nouvelle LPD
- Plans sociaux
- Prétentions de tiers
- Prévoyance
- Procédure
- Professions réglementées
- Protection de la personnalité
- Protection des données
- Qualification du contrat
- recrutement
- Responsabilité du travailleur
- RGPD
- Salaire
- salaire minimum
- Sécurité au travail
- Surveillance
- Techno-labrador
- Temps de travail
- transparence
- Travail au noir
- Usages
- Vacances
Méta
-
Tag Archives: OpenAI
IA : pourquoi les hallucinations ?
Les hallucinations des modèles de langage ne sont pas des anomalies mystérieuses mais le produit de leur entraînement et surtout de leur évaluation. Le pré-entraînement conduit à des erreurs sur les faits rares, impossibles à généraliser statistiquement. Le post-entraînement aggrave le phénomène car les benchmarks dominants notent comme à un QCM : mieux vaut deviner qu’admettre son ignorance. La solution proposée est de modifier ces évaluations pour récompenser l’expression d’incertitude et réduire les réponses fausses mais assurées. Lire la suite
ChatGPT et la flagornerie algorithmique
La flagornerie des LLMs est un problème connu, qui a récemment fait l’objet d’un retour d’expérience intéressant par OpenAI. Lire la suite